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Abstract: We discuss the integrability structure of deformed, four-dimensional N =

4 super Yang-Mills theories using Yangians. We employ a recent procedure by Beisert

and Roiban that generalizes the beta deformation of Lunin and Maldacena to produce

N = 1 superconformal gauge theories, which have the superalgebra SU(2, 2|1)×U(1)2 . The

deformed theories, including those with the more general twist, were shown to have retained

their integrable structure. Here we examine the Yangian algebra of these deformed theories.

In a five field subsector, we compute the two cases of SU(2)×U(1)3 and SU(2|1)×U(1)2

as residual symmetries of SU(2, 2|1)×U(1)2. We compute a twisted coproduct for these

theories, and show that only for the residual symmetry do we retain the standard coproduct.

The twisted coproduct thus provides a method for symmetry breaking. However, the full

Yangian structure of SU(2|3) is manifest in our subsector, albeit with twisted coproducts,

and provides for the integrability of the theory.
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1. Introduction

With the advent of the of AdS/CFT correspondence, there has been much interest in

conformal field theories. In the mid 1990’s N = 1 conformal field theories were constructed

by exactly marginal deformations [1]. These N = 1 theories have the same particle content

as the original N = 4 theory. The N = 4 super Yang-Mills theory was broken to a

N = 1 superconformal theory by the addition of the classical marginal deformation with

the superpotential

W = ihTr
(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
+
ih′

3
Tr

(
Φ3

1 + Φ3
2 + Φ3

3

)
. (1.1)

The condition for an exact marginal deformation, is that the parameters must obey

|h|2
(

1 +
1

N2
(q − q̄)2

)
+ |h′|2

N2 − 4

2N2
= g2, (1.2)

where h, h′, and q = eiπβ are the deformation parameters and g is the Yang-Mills coupling

constant. The large N limit simplifies this condition, and if we set h′ = 0 as is commonly

done, then h = g is the requirement for a marginal deformation. We will consider real β.

Lunin and Maldacena incorporated this deformation via a star product [2] to find

an N = 1 superconformal Yang-Mills theory with global U(1) symmetries. They found
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the gravity dual of this theory through the AdS/CFT correspondence. A three-parameter

family of parameters replacing β was given [3]. Using Bethe ansatz techniques, it was found

in [4]–[6] that the one-loop corrections in the large N limit of these deformed theories still

provided an integrable spin chain Hamiltonian. More general deformed integrable theories

were provided in [7]. These correspond to multi-parameter, N = 1 superconformal theories

with the Lagrangian

L =
1

g2
Tr

(
1

4
FµνFµν +

(
DµΦ̄i

)
(DµΦi) −

1

2
[Φi,Φj]Cij

[Φ̄i, Φ̄j ]Cij
+

1

4
[Φi, Φ̄

i][Φj, Φ̄
j ] (1.3)

λAσ
µDµλ̄

A − i([λ4, λi]B4i
Φ̄i+[λ̄4, λ̄i]B4i

Φi) +
i

2
(ǫijk[λi, λj ]Bij

Φk+ǫijk[λ̄
i, λ̄j ]Bij

Φ̄k)

)
,

where Bij and Cij are related, and describe the deformations. The gauge group is SU(N).

For these theories, amplitudes and the finiteness properties have been calculated [8]–[16].

Some further connections between integrability and deformed theories have been discussed

in [17]–[21].

In this paper, we compute the Yangian structure for such deformed theories. The

ordinary symmetries are the N = 1 superconformal algebra SU(2, 2|1) with two global

U(1) symmetries. Following [7, 22, 23], we will consider the one-loop dilatation operator,

which we call the Hamiltonian, in a subsector of the full deformed theory. This subsector

has five one-particle states in the fundamental representation of SU(2|3). In section 2 we

discuss the algebraic structure of SU(2|3) and its Yangian extension. In section 3 we give

the two-site Hamiltonian as a quadratic Casimir and discuss the SU(2|3) Yangian symmetry

of the undeformed theory [24]–[28]. In section 4 we give the Hamiltonian for the deformed

theory in this five field subsector, in the planar limit, and compute the Yangian generators

for various cases including the Lunin-Maldacena deformation. In section 5, we compute the

twisted coproducts associated with multiparameter deformations [29, 30]. This structure

was hinted at in [7]. We show the residual symmetry of the deformed theory continues

to use the standard coproduct while the remaining structure does not. We illustrate this

in two examples finding residual SU(2)×U(1)3 and SU(2|1)×U(1)2 symmetry, and discuss

how the twisted coproduct is responsible for the smaller symmetry group for the deformed

conformal gauge field theory.

2. The SU(2|3) sector

We review the fields of this closed subsector and discuss its symmetry algebra. The five

fields include two complex fermions and three complex bosons, ΦI = {ψ1, ψ2;φ1, φ2, φ3}.

We can express these fields as single particle states,

φa(i)|0〉 = c
†

a(i)c
†

4(i)|0〉, ψα(j)|0〉 = a
†

α(j)c
†

4(j)|0〉, (2.1)

where 1 ≤ α, β ≤ 2 and 1 ≤ a, b ≤ 3 unless otherwise stated. Site indices i, j run over

the length of the chain, 1 ≤ i, j ≤ L. The oscillator (field), c
†

4(i), is a remnant of the full

PSU(2, 2|4) theory [22] and is included to ensure the fermionic and bosonic properties of
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this oscillator representation. The oscillator commutation relations are

[aα(i), a
†

β(j)] = δα
β δ

i
j , {ca(i), c

†

b(j)} = δa
b δ

i
j . (2.2)

The twenty-four generators of the SU(2|3) superalgebra have the explicit representation,

at tree level (g = 0),

Ra
b = c

†

bc
a −

1

3
δa
b c

†

cc
c, Lα

β = a
†

βa
α −

1

2
δα
βa

†

γa
γ , (2.3)

D = c
†

cc
c +

3

2
a
†

γa
γ , Sγ

c = c
†

ca
γ , Qc

γ = a
†

γc
c.

The SU(2|3) algebra. A single index basis for the symmetry generators of the ordinary

SU(2|3) algebra is given in appendix A. The symmetry generators for SU(3) and SU(2)

carry indices {1, . . . , 8} and {9, 10, 11}, respectively; the dilation generator has index 12,

and the odd generators are labeled by {13, . . . , 24}. A detailed analysis of the SU(2|3)

algebra and resulting spin chain can be found in [22, 23]. The symmetry generators close

the algebra [
JA, JB

}
= fAB

CJ
C = fABDgDCJ

C , (2.4)

where the structure constants fABC and the metric gAB of SU(2|3) can also be found in

appendix A. This basis allows for a simple presentation of the Yangian defining relations.

The SU(2|3) Yangian algebra. An infinite-dimensional extension of the SU(2|3) al-

gebra, called the Yangian [32, 31], has a tree level representation in terms of the ordinary

generators

QA
0 = −fA

CB

∑

i<j

JB
0 (i)JC

0 (j). (2.5)

This representation takes into account the superalgebra properties of the Lie alge-

bra [24]. The super Yangian algebra defining relations are

[
JA, JB

}
= fAB

CJ
C , (2.6)

[
JA, QB

}
= fAB

CQ
C , (2.7)

[
Q[A ,

[
QB , J C]

}}
= αfAG

Df
BH

Ef
CK

F fGHKJ
{D JEJ F}. (2.8)

The last is the Serre relation which holds because the generators JA are in a certain

representation. The constant α depends on the choice of basis. Here J{D JEJ F} is the

totally symmetric product, with an additional minus sign for the exchange of two odd

generators.

3. The hamiltonian

A useful feature of this sector is the relationship between the quadratic Casimir and the

two-site Hamiltonian. A Hamiltonian, of generic length L, was found in [22]1. The two-site

1Length changing, for the SU(2|3) sector, is required for higher than one-loop order, but here we consider

only one-loop, O(g2).
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Hamiltonian is

H12 =
(
c
†

a(1)c
†

b(2) − c
†

b(1)c
†

a(2)
)
cb(2)ca(1) +

(
c
†

a(1)a
†

α(2) + a
†

α(1)c
†

a(2)
)
aα(2)ca(1)

+
(
a
†

α(1)c
†

a(2) + c
†

a(1)a
†

α(2)
)
ca(2)aα(1) +

(
a
†

α(1)a
†

β(2) + a
†

β(1)a
†

α(2)
)
aβ(2)aα(1).

(3.1)

One can explicitly check, the Hamiltonian above has two eigenstates with eigenvalues 0 and

2. These correspond to symmetric and antisymmetric two-particle states and are discussed

below.

The two-site quadratic Casimir is the operator, gABJ
AJB = gAB(J(1)A +

JA(2))(JB(1) + JB(2)). And can be explicitly shown,

gABJ
AJB =

1

3
D2 +

1

2
Lγ

δL
δ
γ −

1

2
Rc

dR
d
c −

1

2
[Qc

γ , S
γ

c] . (3.2)

The single site quadratic Casimir acting on any two-particle state |η〉, is zero.

So, gABJ
A(1)JB(1)|η〉 = gABJ

A(2)JB(2)|η〉 = 0 and the cross term piece is

2gABJ
A(1)JB(2) = H12, where H12 is given in (3.1). So the two-site Hamiltonian can

be identified with the quadratic Casimir

H12|η〉 = gAB [JA(1) + JA(2)][JB(1) + JB(2)]|η〉, (3.3)

when acting the states.

For calculations with Yangians it is useful to use eigenstates of the Hamiltonian. The

two-particle eigenstates are symmetric or antisymmetric in the site indices. We define them

as, |ΦIΦJ〉± = |ΦI(1)ΦJ(2)〉±|ΦI(2)ΦJ (1)〉. The explicit representation of the symmetric

states is,

|ab〉+ = −
(
c
†

a(1)c
†

b(2) + c
†

b(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|aβ〉+ =
(
c
†

a(1)a
†

β(2) − a
†

β(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|αβ〉+ =
(
a
†

α(1)a
†

β(2) − a
†

β(1)a
†

α(2)
)
c
†

4(1)c
†

4(2)|0〉.

(3.4)

The representation of the antisymmetric states is

|ab〉− = −
(
c
†

a(1)c
†

b(2) − c
†

b(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|aβ〉− =
(
c
†

a(1)a
†

β(2) + a
†

β(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|αβ〉− =
(
a
†

α(1)a
†

β(2) + a
†

β(1)a
†

α(2)
)
c
†

4(1)c
†

4(2)|0〉,

(3.5)

These two groups, symmetric and antisymmetric, make up two towers. Ordinary symmetry

generators of SU(2|3), move one up and down in each tower, while Yangian generators move

from one tower to a linear combination in the other.

Commutation of the dilatation operator with the other symmetry generators gives the

anomolous dimension of that operator, [D,JA] = (dimJA)JA. This relation holds for the

Yangian, [D,QA] = (dimJA)QA. Assuming these relations hold to all order of the Yang-

Mills coupling, as discussed in [26], we expand the operators, [D,QA] = [D0 + g2
YMD2 +

· · · , QA
0 + gYMQ

A
1 + g2

YMQ2 + · · · ] and group in powers of the Yang-Mills coupling g,

(dimJA)(QA
0 + gYMQ

A
1 + g2

YMQ
A
2 ) + g2

YM[D2, Q
A
0 ] ≈ (dimJA)QA. (3.6)
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To find that [D2, Q
A
0 ] must be zero. In PSU(2, 2|4), an explicit check of the commutator

gives the lattice derivative or ‘edge effects’ of the system, [D2, Q
A
0 ] = qA ∼ 0, qA

1L = JA(1)−

JA(L). Our Yangian in SU(2|3), while not a subalgebra of the Yangian of PSU(2, 2|4),

maintains this relation. To see this we introduce the identity,

[
gABJ(1)AJ(2)B , qC

12

]
= 4QC

12, (3.7)

where QA
12 is the two-site version of the bare generator QA

0 . So we have 1
4

[
H12, q

A
12

]
= QA

12,

and the one-loop calculation becomes

[
H12, Q

A
12

]
=

1

4

(
H2

12q
A
12 − 2H12q

A
12H12 + qA

12H
2
12

)
. (3.8)

From the previous section, the Yangian acting on a tower moves it to the other tower (i.e.

moves a symmetric state to an antisymmetric and vice versa). From eq. (3.7), if the Yangian

produces this type of movement so must the edge effect, qA. Recalling the values under the

Hamiltonian of the two-particle states H12|Φ1Φ2〉+ = 0,H12|Φ1Φ2〉− = 2|Φ1Φ2〉−, we see

the middle term vanishes under both symmetric and antisymmetric states. We find that

[
H12, Q

A
12

]
|Φ1Φ2〉± = qA

12|Φ1Φ2〉±, (3.9)

which is the two-site version of the edge effect described above in the SU(2|3) sector.

4. The deformed hamiltonian

We turn to the twist deformation found in [7]. A second solution to the graded Yang-Baxter

equation for the SU(2|3) sector was given

R̃ =
1

u+ i

(
ue−iBijIkl

ij + iPkl
ij

)
. (4.1)

This deformed R-matrix, is the conventional R-matrix solution to the Yang-Baxter equation

with additional phases. The identity and projection operators are Ikl
ij = δk

i δ
l
j and Pkl

ij =

δl
iδ

k
j . The deformed monodromy matrix is defined

T̃ b;β1...βL
a;α1...αL

= R̃
bL−1βL
aαL

R̃
bL−2βL−1

bL−1αL−1
· · · R̃b1β2

b2α2
R̃

aβ1

b1α1
exp


iπ

L∑

i=1

i−1∑

j=1

([αi] + [βi])[αj ]


 , (4.2)

where the Z2 graded set of states is denoted by the [αi]. Derived from the trace of the mon-

odromy matrix, the deformed transfer matrix is T̃ (u) = (−)[a]T̃ a
a (u). Like the normal case,

we find the deformed Hamiltonian is the logarithmic derivative of the deformed transfer

matrix, H̃ = −i
(
T̃ (u∗)

)−1
d
du T̃ (u)

∣∣∣∣
u=u∗

. This is more closely examined for two-particle

states in the following section.
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4.1 Deformed two-site hamiltonian

The two-site transfer matrix is T̃ (u) = R̃
b1β2
aα2 R̃

aβ1

b1α1
exp [iπ([α2] + [β2])[α1]]. Using normal

procedures for calculating the Hamiltonian, we find the logarithmic derivative of the de-

formed transfer matrix and expand at u∗ = 0,

H̃ =
(
δβ1
α1
δβ2
α2

− δβ2
α1
δβ1
α2
e−iBα1α2

)
+

(
δβ1
α1
δβ2
α2

− δβ2
α1
δβ1
α2
e−iBα2α1

)
=

(
H̃β1β2

α1α2

)
+

(
H̃β2β1

α2α1

)
.

(4.3)

Define the deformed two-site Hamiltonians, H̃12 ≡ H̃β1β2
α1α2 and H̃21 ≡ H̃β2β1

α2α1 . Examining

closer, we see a phase is obtained under interchange of two fields.

H̃12 =
(
c
†

a(1)c
†

b(2) − e−iBabc
†

b(1)c
†

a(2)
)
cb(2)ca(1)

+
(
c
†

a(1)a
†

α(2) + e−iBaαa
†

α(1)c
†

a(2)
)
aα(2)ca(1)

+
(
a
†

α(1)c
†

a(2) + e−iBαac
†

a(1)a
†

α(2)
)
ca(2)aα(1)

+
(
a
†

α(1)a
†

β(2) + e−iBαβa
†

β(1)a
†

α(2)
)
aβ(2)aα(1).

(4.4)

The antisymmetric matrix BAB is a matrix of phases formed from the charges of the Cartan

generators of the original R symmetry SU(4) and is described in [7],

B =




0 −γ3 +γ2
1
2 (γ2 − γ3)

1
2 (γ2 − γ3)

+γ3 0 −γ1
1
2 (γ3 − γ1)

1
2 (γ3 − γ1)

−γ2 +γ1 0 1
2 (γ1 − γ2)

1
2 (γ1 − γ2)

1
2 (γ3 − γ2)

1
2 (γ1 − γ3)

1
2 (γ2 − γ1) 0 0

1
2 (γ3 − γ2)

1
2 (γ1 − γ3)

1
2 (γ2 − γ1) 0 0



. (4.5)

The deformation parameters γi are three real constants. The eigenstates of the deformed

Hamiltonian are

|̃ab〉± = −
(
eiBab/2c

†

a(1)c
†

b(2) ± e−iBab/2c
†

b(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|̃aβ〉± =
(
eiBaβ/2c

†

a(1)a
†

β(2) ∓ e−iBaβ/2a
†

β(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

˜|αβ〉± =
(
eiBαβ/2a

†

α(1)a
†

β(2) ∓ e−iBαβ/2a
†

β(1)a
†

α(2)
)
c
†

4(1)c
†

4(2)|0〉.

(4.6)

As before, they have eigenvalues H̃2|̃+〉 = 0|̃+〉 and H̃2|̃−〉 = 2|̃−〉. Note that special cases

of repeated fields will never receive phase corrections.

4.2 Case 1: γ1 = γ2 = γ3

Since we are interested in deformed theories that have N = 1 superconformal symmetry, we

first examine the case of phase deformations with all parameters equal, γ1 = γ2 = γ3 = γ.

The resultant nonzero phases are B13 = B21 = B32 = γ and give a residual SU(2)×U(1)3

symmetry. This is the beta deformation of Lunin and Maldacena [2, 7], but restricted to

our five field subsector. So the nonzero commutation relations after deformation are just

the SU(2) algebra

[Lα
β, L

γ
δ] = δα

δ L
γ
β − δ

γ
βL

α
δ. (4.7)

– 6 –
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The three U(1) generators are U1 = 3
4c

†

4c
4 − 1

4c
†

cc
c, U2 = c

†

2c
2 − c

†

3c
3, and U3 = c

†

2c
2 − c

†

1c
1.

Two-particle eigenstates of the deformed Hamiltonian have a phase on the states with two

SU(3) fields and no phase any of the additional states.

|̃ab〉± = −
(
eiBab/2c

†

a(1)c
†

b(2) ± e−iBab/2c
†

b(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

|̃aβ〉± =
(
c
†

a(1)a
†

β(2) ∓ a
†

β(1)c
†

a(2)
)
c
†

4(1)c
†

4(2)|0〉,

˜|αβ〉± =
(
a
†

α(1)a
†

β(2) ∓ a
†

β(1)a
†

α(2)
)
c
†

4(1)c
†

4(2)|0〉.

(4.8)

If we try to examine the one-loop quantity, [H̃,QA
0 ], using the Yangian from the un-

deformed SU(2|3) theory, we would find
[
H̃,QA

]
|̃ab〉± = qA |̃ab〉±,

[
H̃,QA

]
|̃aα〉± = qA |̃aα〉±,

[
H̃,QA

]
˜|αβ〉± = qA ˜|αβ〉±,

(4.9)

only for A = {A|JA ∈ SU(2) × U(1)3}.

4.3 Case 2: γ1 = γ2 = −γ3

Another N = 1 superconformal theory, embedded differently in the original PSU(2, 2|4)

algebra, is given by γ1 = γ2 = −γ3. The nonzero elements of the antisymmetric matrix

are Bab : B12 = B13 = −B23 = γ and Baα : B1α = −B2β = γ.2 The residual symmetry is

SU(2|1)×U(1)2 . This symmetry algebra has a richer structure containing a superalgebra

containing {Lα
β , Q

3
α, S

α
3, R} and the two U(1)s: R = a

†

γa
γ + 2c

†

cc
c, U2 = c

†

2c
2 − c

†

1c
1,

U3 = c
†

4c
4 − c

†

2c
2. The nonzero commutation relations for this form of the embedding are

[Lα
β, Jγ ] = δα

γ Jβ −
1

2
δα
βJγ , [Lα

β, J
γ ] = −δγ

βJα +
1

2
δα
βJ

γ , (4.10)

[R,Sα
3] = Sα

3,
[
R,Q3

α

]
= −Q3

α,
{
Sα

3, Q
3
β

}
= Lα

β +
1

2
δα
βR.

We could again try to compute with the tree level Yangian in the deformed theory, however

we would find that unless we use QA with {A ∈ SU(2|1)×U(1)2} and restrict to eigenstates

whose one particle fields lie in the fundamental representation of the residual symmetry,

the standard form of the tree level Yangian (2.5) is not useful.

Therefore, we look for the appropriate form of the tree level Yangian from the deformed

transfer matrix. In [30], a twisted R-matrix is derived via a Reshetikhin twist [29] leading

to a deformed coproduct. Our deformed R-matrix is a supersymmetric version of this,

as briefly mentioned in [7]. So we will use a twisted coproduct to compute the tree level

Yangian.

5. Twisted coproducts

We identify the deformed R-matrix in eq. (4.1) with a multiparameter form [29, 30]. This

requires a twisted coproduct on our generators. For an algebra A, a coproduct is a ho-

momorphic map ∆ : A → A which brings a single site representation into a double-site

2For the remainder of this section, 1 ≤ a, b ≤ 2, 1 ≤ αβ ≤ 2.
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representation, a double-site into a triple-site, etc [31, 32]. Here, A is the Yangian of

SU(2|3). We forego our single index notation because this coproduct is dependent on the

specifics of our generators and is easier to use with double indices.3 The twisted coproduct

for the ordinary generators is

∆Ra
b = Kab ⊗Ra

b +Ra
b ⊗Kba,

∆Lα
β = Kαβ ⊗ Lα

β + Lα
β ⊗Kβα,

∆Qc
γ = Kcγ ⊗Qc

γ +Qc
γ ⊗Kγc,

∆Sγ
c = Kγc ⊗ Sγ

c + Sγ
c ⊗Kcγ ,

∆D = 1 ⊗D +D ⊗ 1.

(5.1)

As before, 1 ≤ a, b ≤ 3 and 1 ≤ α, β ≤ 2 and now 1 ≤ I, J,K ≤ 5. The twisted

coproducts depend on the antisymmetric parameters, αIJ = −αJI , which reside in KIJ =

exp
[

i
2

∑5
K=1 (αIK − αJK)EKK

]
.4 So,

Kab = e
i
2(αaγ−αbγ)Eγγ+ i

2
(αac−αbc)Ecc = K−1

ba ,

Kαβ = e
i
2(ααγ−αβγ)Eγγ+ i

2(ααc−αβc)Ecc = K−1
βα ,

Kaα = e
i
2
(αaγ−ααγ)Eγγ+ i

2
(αac−ααc)Ecc = K−1

αa .

(5.2)

The quadratic Casimir of the SU(2|3) algebra with this twisted coproduct is

gAB∆JA∆JB =
1

3
∆D∆D +

1

2
∆Lγ

δ∆L
δ
γ −

1

2
∆Rc

d∆R
d
c −

1

2
[∆Qc

γ ,∆S
γ
c] . (5.3)

When we expand using the above coproducts, it can be shown the phase contributions

cancel in the single site components of the Casimir. As argued previously, these components

give zero when acting on the states. Just as important, if we examine the cross terms we

retrieve the deformed Hamiltonian discussed in the previous section. So, acting on a two-

particle state |η〉,

gAB∆JA∆JB|η〉 = H̃12|η〉, (5.4)

where H̃12 is given by (4.4) if we relate the deformation parameters with those from before,

αIJ = BIJ . So, the deformed Hamiltonian commutes with all of the ordinary symmetry

generators for arbitrary BIJ ,

[H̃12, J12
A

B ] = 0, (5.5)

where we construct J12
A

B with the coproduct in (5.1). An example two-site generator is,

R12
a
b = R(1)abK(2)ba +K(1)abR(2)ab. With this information we can begin to reconstruct

the identities associated with the Yangian structure given in the previous section. To avoid

confusion with the supercharge, Qa
α, we shall denote the Yangian generator QA, in two

index notation, as ĴA
B . Coproducts for twisted Yangian generators [30, 33] of SU(2|3)

take the form

∆R̂a
b = Kab ⊗ R̂a

b + R̂a
b ⊗Kba +

1

2
h (Ra

cKcb ⊗KcaR
c
b −KacR

c
b ⊗Ra

cKbc)

3A brief description can be found in appendix B.
4Twisted coproducts can be generated from a deforming function, F , such that ∆(F ) = F∆(0)F−1,

where ∆(0) is the standard coproduct [29, 32]. The standard coproduct corresponds to KIJ = 1.
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+
1

2
h (Qa

γKγb ⊗KγaS
γ
b +KaγS

γ
b ⊗Qa

γKbγ)

−
1

6
hδa

b (Qc
γKγc ⊗KγcS

γ
c +KcγS

γ
c ⊗Qc

γKcγ) , (5.6)

∆L̂α
β = Kαβ ⊗ L̂α

β + L̂α
β ⊗Kβα +

1

2
h (Lα

γKγβ ⊗KγαL
γ
β −KαγL

γ
β ⊗ Lα

γKβγ)

+
1

2
h (SαKcβ ⊗KcαQ

c
β +KαcQ

c
β ⊗ Sα

cKβc)

−
1

4
hδα

β (Sγ
cKcγ ⊗KcγQ

c
γ +KγcQ

c
γ ⊗ Sγ

cKγc) , (5.7)

∆Q̂a
α = Kaα ⊗ Q̂a

α + Q̂a
α ⊗Kαa +

1

2
h (Qa

γKγα ⊗KγaL
γ
α −KaγL

γ
α ⊗Qa

γKαγ)

+
1

2
h (Ra

cKcα ⊗KcaQ
c
α −KacQ

c
α ⊗Ra

cKαc) , (5.8)

∆Ŝα
a = Kαa ⊗ Ŝα

a + Ŝα
a ⊗Kaα +

1

2
h (Sα

cKca ⊗KcaR
c
a −KαcR

c
a ⊗ Sα

cKac)

+
1

2
h (Lα

γKγa ⊗KγαS
γ
a −KαγS

γ
a ⊗ Lα

γKaγ) , (5.9)

∆D̂ = 1 ⊗ D̂ + D̂ ⊗ 1 +
1

4
h (Sγ

cKcγ ⊗KcγQ
c
γ +KγcQ

c
γ ⊗ Sγ

cKγc) . (5.10)

These coproducts are coassociative and quasi-cocommutative [34], and satisfy (2.6)-(2.8)

in the double index basis. In the derivation of the above coproduct for the deformed

SU(2|3) Yangians, we had to respect the even/odd property of the generators and the

traceless condition of the even generators. The parameter h is related to α in the Serre

relation (2.8).

We can use the twisted identity

[
H̃12, q12

A
B

]
= 8hĴ12

A
B, (5.11)

where q12
A

B = JA
B ⊗KBA −KAB ⊗JA

B , and the Ĵ12 are given by the h dependent terms

in (5.6). For example, the two-site tree level Yangian generator Q̂a
α is given by

Q̂12
a
α =

1

2
h (Q(1)aγK(1)γαK(2)γaL(2)γα −K(1)aγL(1)γαQ(2)aγK(2)αγ) (5.12)

+
1

2
h (R(1)acK(1)cαK(2)caQ(2)cα −K(1)acQ(1)cαR(2)acK(2)αc) .

Then on two-sites we can show

[
H̃12, Ĵ12

A
B

]
=

1

2
hq12

A
B, (5.13)

acting on all the eigenstates.

In order to promote (5.5) and (5.13)–(5.10) to L sites, we construct the L-site repre-

sentation for JA
B and ĴA

B using twisted coproducts with (5.1) and (5.6). We find

[
H̃, JA

B

]
= 0, (5.14)
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and

[
H̃, ĴA

B

]
=

L−1∑

i=1

[
H̃i,i+1, Ĵi,i+1

A
B

]
(5.15)

=
1

2
h

(
J(1)ABK(2)BA · · ·K(L)BA −K(1)AB · · ·K(L− 1)ABJ(L)AB

)

If we examine an infinite length chain, which would resemble the worldsheet of the dual

string theory, we can assume that surface terms at infinity can be dropped [26], and in

that sense, [H̃, ĴA
B] = 0. Thus, following the discussion in section 3, (5.15) provides a

consistency check on the assumption that the SU(2|3) Yangian, with the twisted coproduct,

holds to all orders in the Yang-Mills coupling constant.

Up to this point, the analysis in this section holds for arbitrary, antisymmetric αIJ . We

now illustrate the use of Yangians in these twisted theories in the two cases we examined

earlier, in order to explain the residual symmetries.

Case 1: γ1 = γ2 = γ3. We examine the twisted coproducts of Case 1. Recall, the phase

elements have the property Baα = 0, Bαβ = 0, and the Bab sector contains some non-zero

entries. We explicitly write the coproducts,

Kab = e
i
2
(αac−αbc)Ecc = K−1

ba , Kαβ = 1 = K−1
βα , Kaα = e

i
2
αacEcc = K−1

αa . (5.16)

We examine the symmetry after using the twisted coproducts and find the residual

SU(2)×U(1)3 symmetry corresponds to an undeformed coproduct:

Residual Symmetry Residual Symmetry

∆Lα
β = 1 ⊗ Lα

β + Lα
β ⊗ 1, ∆Ra

b = Kab ⊗Ra
b +Ra

b ⊗Kba,

∆D = 1 ⊗D +D ⊗ 1, ∆Qc
γ = Kcγ ⊗Qc

γ +Qc
γ ⊗Kγc,

∆Rc
c = 1 ⊗Rc

c +Rc
c ⊗ 1, ∆Sγ

c = Kγc ⊗ Sγ
c + Sγ

c ⊗Kcγ .

(5.17)

Using these definitions one could check for the two-particle eigenstates, |̃±〉 listed in a

previous section, [
H̃12, Ĵ12

A
B

]
|̃±〉 =

1

2
hq12

A
B |̃±〉. (5.18)

Case 2: γ1 = γ2 = −γ3. We consider the richer structure of case 2. From previous

sections we saw a residual SU(2|1)×U(1)2 symmetry. Recall, we have zero phase elements

in the sectors ααβ = α3α = 0. The other phases, α1α = −α2α and α12 = α13 = −α23.

In this section, we label the fields ΦI = {φa, φ3, ψα}, with the indices 1 ≤ a, b ≤ 2 and

1 ≤ α, β ≤ 2. The twisted coproducts, have deformation parameters

Kαβ = 1 = K−1
βα , K3α = 1 = Kα3, K33 = 1,

Kab = e
i
2
(αaγ−αbγ )Eγγ+ i

2
(αa3−αb3)E33+ i

2
(αac−αbc)Ecc = K−1

ba ,

Ka3 = e
i
2
αaγEγγ+ i

2
αa3E33+ i

2
(αac−α3c)E33 = K−1

3a ,

Kaα = e
i
2
αaγEγγ+ i

2
(αa3−αα3)E33+ i

2
(αac−ααc)Ecc = K−1

αa .

(5.19)
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We apply these parameters and find the residual SU(2|1)×U(1)2 symmetry:

Residual Symmetry Residual Symmetry

∆Lα
β = 1 ⊗ Lα

β + Lα
β ⊗ 1, ∆Ra

b = Kab ⊗Ra
b +Ra

b ⊗Kba,

∆Q3
γ = 1 ⊗Q3

γ +Q3
γ ⊗ 1, ∆Qc

γ = Kcγ ⊗Qc
γ +Qc

γ ⊗Kγc,

∆Sγ
3 = 1 ⊗ Sγ

3 + Sγ
3 ⊗ 1, ∆Sγ

c = Kγc ⊗ Sγ
c + Sγ

c ⊗Kcγ .

∆D = 1 ⊗D +D ⊗ 1,

∆Rc
c = 1 ⊗Rc

c +Rc
c ⊗ 1,

(5.20)

Again, one could directly compute, using the two-particle eigenstates in a previous

section, to find
[
H̃2, Ĵ

A
B

]
|̃±〉 = q12

A
B |̃±〉. In both cases, since the coproducts for the

remaining symmetries are non-standard and contain deformation parameters, these signal

broken symmetries in the corresponding deformed gauge field theories.

6. Conclusion

We identified the Yangian structure for SU(2|3). Like the parent case of PSU(2, 2|4), we

could check that the Yangian commutation relations hold to one-loop. Using the twisted

R-matrix of the Yang-Baxter equation, supplied by Beisert and Roiban we computed the

twisted coproducts using Reshetikhins formalism. This twisted coproduct left a residual

symmetry.

We derived that the useful identities found in the undeformed theory all have a twisted

analog. We explicitly calculated the twisted quadratic Casimir and showed, acting on two-

particle states, the twisted Casimir is equivalent to the deformed Hamiltonian of the theory.

We go on to show the residual symmetries found above have a null phase, KAB = 1,

corresponding to the standard, undeformed coproduct. All remaining symmetries have

phases associated with their coproducts. So, in general to find a certain residual symmetry,

one could start by assuming untwisted coproducts for the desired generators.

For chains of larger length, the twisted coproducts give a formalism that will maintain

its ‘edge’ effects and therefore can be used to check the Yangian symmetry extrapolated

to one-loop. Although higher loops in the SU(2|3) sector have dynamical lengths, our

argument suggest this structure might survive to all orders, and therefore we expect to

find also the SU(2|3) Yangian symmetry with twisted coproducts in the worldsheet of the

dual string theory.

Although the full SU(2|3) Yangian algebra is still present in the deformed theories,

and is responsible for its integrability, the symmetries of the deformed field theories are the

residual groups, due to the twisted coproducts. These subgroups SU(2)×U(1)3 in Case 1,

and SU(2|1)×U(1)2 in Case 2 correspond to the unbroken subgroups of SU(2, 2|1)×U(1)2

in the N = 1 superconformal deformed gauge field theory, that survive in its SU(2|3) sector

we consider in this paper.

The twisted coproduct has provided a mechanism for maintaining integrability in a

theory while breaking some of its initial symmetry. This procedure might be useful in

formulating integrable versions of even smaller symmetries, possibly N = 0 Yang-Mills.
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A. Single index basis

It is sometimes convenient to chose a single index basis for the twenty-four generators of

SU(2|3). The twelve even generators have the representation

SU(3) SU(2) U(1)

J1 = R1
2 +R2

1 J9 = L1
2 + L2

1 J12 = D

J2 = i(R1
2 −R2

1) J10 = i(L1
2 − L2

1)

J3 = R1
1 −R2

2 J11 = L1
1 − L2

2

J4 = R1
3 +R3

1

J5 = i(R1
3 −R3

1)

J6 = R2
3 +R3

2

J7 = i(R2
3 −R3

2)

J8 = R1
1 +R2

2 − 2R3
3

(A.1)

The twelve odd generators have the representation

J13 = S1
1 +Q1

1 J19 = S2
1 +Q1

2

J14 = i(S1
1 −Q1

1) J20 = i(S2
1 +Q1

2)

J15 = S1
2 +Q2

1 J21 = S2
2 +Q2

2

J16 = i(S1
2 −Q2

1) J22 = i(S2
2 +Q2

2)

J17 = S1
3 +Q3

1 J23 = S2
3 +Q3

2

J18 = i(S1
3 −Q3

1) J24 = i(S2
3 +Q3

2).

(A.2)

The metric is symmetric (and diagonal) in the even regions and antisymmetric in the odd

regions.

g(1)(1) = g(2)(2) = g(3)(3) = g(4)(4) = g(5)(5) = g(6)(6) = g(7)(7) = g(8)(8) = −
1

4
, (A.3)

g(9)(9) = g(10)(10) = g(11)(11) =
1

4
,

−g(13)(14) = g(14)(13) = −g(15)(16) = g(16)(15) = · · · = g(22)(21) = −g(23)(24) = g(24)(23) =
1

4i
.

The SU(2|3) algebra obeys the commutation [JA, JB ] = fABCgCDJ
D. The structure

constants are totally antisymmetric with an additional minus sign under the interchange

of two odd indices.

f (1)(2)(3) = −f (9)(10)(11) = −8i (A.4)

f (1)(4)(7) = f (1)(6)(5) = f (2)(4)(7) = f (2)(5)(7) = f (3)(4)(5) = f (3)(7)(6) = −4i

f (4)(5)(8) = f (6)(7)(8) = −12i
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f (1)(13)(15) = f (1)(14)(16) = f (1)(19)(21) = f (1)(20)(22) = −4

f (2)(13)(16) = −f (2)(14)(15) = f (2)(19)(22) = −f (2)(20)(21) = −4

f (3)(13)(13) = f (3)(14)(14) = −f (3)(15)(15) = −f (3)(16)(16) = −4

f (3)(19)(19) = f (3)(20)(20) = −f (3)(21)(21) = −f (3)(22)(22) = −4

f (4)(13)(17) = f (4)(14)(18) = f (4)(19)(23) = f (4)(20)(24) = −4

f (5)(13)(18) = f (5)(14)(17) = f (5)(19)(24) = f (5)(20)(23) = −4

f (6)(15)(17) = f (6)(16)(18) = f (6)(21)(23) = f (6)(22)(24) = −4

f (7)(15)(18) = −f (7)(16)(17) = f (7)(21)(24) = −f (7)(22)(23) = −4

f (8)(13)(13) = f (8)(14)(14) = f (8)(15)(15) = f (8)(16)(16) = −4

f (8)(19)(19) = f (8)(20)(20) = f (8)(21)(21) = f (8)(22)(22) = −4

f (8)(17)(17) = f (8)(18)(18) = f (8)(23)(23) = f (8)(24)(24) = 8

f (9)(13)(19) = f (9)(14)(20) = f (9)(15)(21) = f (9)(16)(22) = f (9)(17)(23) = f (9)(18)(24) = 4

f (10)(13)(20) = −f (10)(14)(19) =f (10)(15)(22) =−f (10)(16)(21) =f (10)(17)(24) =−f (10)(18)(23) = −4

f (11)(13)(13) = f (11)(14)(14) = f (11)(15)(15) = f (11)(16)(16) = f (11)(17)(17) = f (11)(18)(18) = 4

f (11)(19)(19) = f (11)(20)(20) = f (11)(21)(21) = f (11)(22)(22) = f (11)(23)(23) = f (11)(24)(24) = −4

f (12)(13)(13) = f (12)(14)(14) = f (12)(15)(15) = f (12)(16)(16) = f (12)(17)(17) = f (12)(18)(18) = 2

f (12)(19)(19) = f (12)(20)(20) = f (12)(21)(21) = f (12)(22)(22) = f (12)(23)(23) = f (12)(24)(24) = 2.

B. Double index basis

The generators can be written in a double index notation [33, 30]. For a general

superalgebra, we can define matrices (EAB)ij = δAiδBj which satisfy [EAB , ECD] =

δCBEAD − δADECB . For SU(2|3),

[Ra
b, R

c
d] = δa

dR
c
b − δc

bR
a
d,

[Ra
b, Q

c
γ ] = −δc

bQ
a
γ +

1

3
δa
bQ

c
γ ,

[Ra
b, S

γ
c] = δa

cS
γ
b −

1

3
δa
bS

γ
c, (B.1)

[Lα
β , L

γ
δ] = δα

δ L
γ
β − δγ

βL
α

δ,

[Lα
β, Q

c
γ ] = δα

γQ
c
β −

1

2
δα
βQ

c
γ ,

[Lα
β , S

γ
c] = −δγ

βS
α
c +

1

2
δα
βS

γ
c , (B.2)

{
Qa

α, S
β

b

}
= δβ

αR
a
b + δa

bL
β

b +
1

3
δa
b δ

β
αD,

[D,Qa
α] = +

1

2
Qa

α,

[D,Sα
a] = −

1

2
Sα

a . (B.3)
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We transform between our SU(2|3) generators and the general matrices defined above by

Ra
b = Eba −

1

3
δa
bEcc, Lα

β = Eβα −
1

2
δα
βEγγ , (B.4)

Sγ
c = Ecγ , Qc

γ = Eγc, D = Ecc +
3

2
Eγγ , (B.5)

where repeated indices are summed over.
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